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The self-assembly of colloidal inclusions has recently been shown in smectic C* freely
suspended films. In such 2D systems, the organization of the inclusions is qualitatively
explained by elastic interactions induced by the disruption of the orientational order in the
SmC* host phase. The interaction between resulting inclusion–defect pairs exhibits a dipolar
character. We have developed a simplified model representing every inclusion and its
companion hyperbolic defect by (z1)- and (21)-wedge disclination lines, respectively. A
finite anchoring energy has been introduced to explain the coalescence of the thinnest
inclusions. Our model enables us to explain the chaining of the thickest inclusions and
confirms the inclusion size dependence on the stability of the chains.

1. Introduction

Studies of dispersions of colloidal particles in an

anisotropic host fluid have recently revealed the new

phenomenon of colloidal self-assembly [1–3]. First seen

in 3D emulsions of water droplets within a continuous

nematic phase [1], this self-organization process results

from elastic interactions mediated via the orientational

order of the host phase. Competition between the

boundary conditions at the droplet surfaces (e.g. radial

or tangential anchoring) and the bulk elasticity of

uniform nematic ordering determines the nature of the

interactions and then the type of organization (e.g. in a

chain, cluster, or even crystal-like structure). Experi-

mental and theoretical studies on 3D nematic emulsions

[1–7] have shown that for sufficiently strong anchoring,

each droplet induces topological defect(s) (i.e. a singula-

rity in the director field) in the nematic host phase.

Depending on the symmetry of the distortion, the

dominant long-range interaction is either dipolar [8] or

quadrupolar [3, 4] in type. In both cases a short-range

repulsive interaction due to the anchoring energy

prevents the coalescence.

More recently, a similar self-organization process of

colloidal inclusions was described in a 2D system

consisting of smectic C* (SmC*) or smectic C (SmC)

free-standing films [9–13]. In the SmC* membranes, the

nucleation of cholesteric (N*) inclusions surrounded by

smectic layers is induced when heating the films above

the bulk SmC*–N* transition temperature [9–11].

Polarizing optical microscopy was used both for the

visualization of the inclusions and the mapping of the

c-director field (projection of the tilted molecules in

the layer plane). Analysis of the texture revealed the

presence of a hyperbolic defect associated with each

inclusion and a radial c-director anchoring at the N*/

SmC* boundary.

In this article, the N* droplets will be modelled by a

(z1)-wedge disclination line of finite length ending in

point defects located near the film surface [14], while

the notion of a hyperbolic defect used in [9–11] will

be expressed as a (21)-wedge disclination line. Conse-

quently, the pair of (¡1)-disclinations and its resulting

zero topological charge (by summing the (¡1) charges)

eliminates any director distortion at long range [14]. In § 2,
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we will explain why the self-organization of the inclusions

is mainly governed by the c-director distortion.

Simple solutions describing the director distribution

near an isolated inclusion and its companion (21)-

wedge disclination will be developed in § 3. For that

purpose we will consider the specific case of a finite

molecular anchoring at the inclusion interface. In § 4,

the interactions between two inclusion–defect pairs will

be treated. A comparison will be made with our

experimental results from [11–13]. In the last section,

we will discuss the possible effects of the chirality of the

smectic phase on the anchoring and the organization of

the N* inclusions.

2. Elastic free energy of an SmC* liquid crystal
In this section, we discuss the contribution of the

smectic layers’ elasticity to the interaction between

inclusions embedded in an SmC* free-standing film. As

a basis we will use the general form for the free elastic

energy density given in [15]. In equation (1), the first

two energetic terms (A and B coefficients) describe the

layer deformation, while the two last (B1 and B3) are

related to the c-director distortion:
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The coordinate system is chosen in such a way that the

plane (x, y) coincides with the smectic layers, and the z-

axis is normal to the layers. The layer displacement u is

perpendicular to the layers. The molecular projection

onto the smectic planes can be characterized by the unit

director c in the form: c~(cosW, sinW) where the angle

W characterizes the director inclination with respect to

the x-axis.

The elastic constant A describes the curvature defor-

mations of layers under the assumption of an isotropic

smectic layer deformation, and B̄ is the compressibility

modulus. The parameter q is related to the SmC*

helical pitch; it can be neglected in the chiral films

studied provided the film thickness D is small compared

with the pitch p, leading to an unwound smectic

structure.

In electro-optic experiments [16] the switching of the

director under an electric field parallel to the film

induces negligible layer deformations. Thus, we did not

take into account the coupling between the layer

deformation and the director distortion in our simpli-

fied model.

According to our experimental results [11], the N*

inclusions nucleate at temperatures above the bulk

SmC*–N* transition. They seem to be separated from

the surrounding SmC* film by a ‘coat’ which gives the

shape of a flattened droplet to the N* inclusion, leading

to a pronounced outer surface relief. The thickness of

the film at the inclusion level can be up to four times

greater than the background film [11]. The flattened

droplet is too complex to be modelled, but it is possible

to represent it in first approximation as a cylinder. The

inclusion is then assimilated to a (z1)-wedge disclina-

tion of length h as illustrated in figure 1.

At the level of the inclusion, the smectic layers are

distorted. It could be possible to model the layer

deformation of the smectic film around the inclusions

by a continuous distribution of prismatic dislocation

loops. Each prismatic loop would correspond to an

edge dislocation with a Burgers vector perpendicular to

the smectic layers. The elastic energy describing the

chaining of two or more inclusions via the layer

distortion would then be defined by an interaction

between line elements of edge dislocations. The latter is

known to be proportional to the factor
ffiffiffiffiffiffiffi
A�BB

p
.

Considering that we are working near to the SmC*–

N* transition temperature, it is known that modulus B̄

is almost zero [15]. As a consequence, one can expect

that the contribution of the layer distortion to energy

(1) can be neglected.

In the following, therefore, we will discuss only the

contribution of the c-director deformation. Moreover,

it has been assumed in expression (1) that the c-director

rotation in the (x, y) plane is isotropic; that is, the

constant B1 represents the director deformations along

both x- and y-axes. This assumption allows us to

extend the use of equation (1) to cases with a large

angle W variation in the c-vector field around the

disclinations.

3. Solutions describing an inclusion and its hyperbolic

defect

The study of SmC* films ranging from 24 to 400

smectic layers (11BSMHOB material [13]) has revealed

two different behaviours during the nucleation and

organization processes of the inclusions. These beha-

viours are clearly linked to the film thickness [11]. For

Figure 1. Schematic representation of the pair inclusion–
hyperbolic defect, using a cylindrical symmetry with
(¡1) topological charges. The inclusion radius is a, the
film thickness D, the inclusion thickness h.

(1)
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the thinnest films (about 24 layers), the nucleation leads

to the creation of small dispersed inclusions (with

diameter 1–3 mm), which tend to coalesce with their

neighbours reaching an apparent diameter of about

5 mm. In contrast, thicker films exhibit inclusions which

quickly reach a diameter greater than 5 mm with no

coalescence and then organize themselves into stable

linear chains.

The experiments have also revealed that small

inclusions exist without a visible accompanying hyper-

bolic defect while large inclusions have one. In the case

of large inclusions, smectic molecules are anchored at

the N*/SmC* interface in such a way that the c-director

preferably adopts the radial configuration. In summary,

the connection between the radial c-director distortion

around each inclusion and the uniformity of the

c-director field at long distance can be achieved in

two ways: large inclusions induce a (21) hyperbolic

defect, while small inclusions have no visible topologi-

cal defect.

Therefore we will discuss separately the cases of large

and small inclusions. The modelling in [17] which was

developed in the approximation of infinite anchoring

can be applied to treat the behaviour of large inclusions

which usually exhibit no coalescence (see § 3.1). By

contrast, in the case of smaller inclusions which do

coalesce, the modelling must involve a finite anchoring

(§ 3.2). In § 3.3 the intermediary case of inclusions with

finite but relatively high anchoring is discussed. We

should note that to our knowledge no exact analytical

solution is available to describe a varying anchoring

energy.

3.1. Modelling with fixed anchoring

Figure 2 gives a schematic representation of an

isolated inclusion and its associated defect: a is the

inclusion radius and l characterizes the distance of

the hyperbolic defect from the inclusion surface. The

simplest solution W satisfying the equilibrium Euler

equation DW~0 outside the inclusion, deduced by vary-

ing expression (1), is given in [5, 17]. The solution fulfils

both the fixed radial c-director anchoring at the

inclusion interface and the homogenous orientation at

long distance. As in our notation, the defects are located

along the x-axis, the solution W can be expressed as:

W~2 arctan
y

x
{ arctan

y=að Þ
x=að Þ{1=C

{ arctan
y=að Þ

x=að Þ{C
ð2Þ

where the parameter C~(azl)/a introduced in [11] is

denoted as the proximity coefficient. The solution (2) is

composed of four disclinations: the (z1)-disclination at

the centre of the inclusion represents the inclusion with

the radial c-director organization around its cylindrical

surface. The (21)-disclination at x~Ca represents the

associated hyperbolic defect. A (21)-image disclination

located at x~a/C describes the repulsion of the hyper-

bolic defect away from the inclusion surface. Finally,

another (z1)-image disclination is positioned at the

inclusion centre. Solution (2) is thus the system of real

and image disclinations ensuring both the fixed radial

anchoring at the inclusion surface and the uniform c-

director at long distance.

Solution (2) is well adapted to systems with an

anchoring energy at the inclusion interface sufficiently

strong to keep the c-director orientation radial. The

energetic investigation in [17], assuming a rigid anchor-

ing at the interface, leads to an upper limit equilibrium

value for the proximity coefficient C&
ffiffiffi
2

p
. The inter-

action between inclusions with strong anchoring

investigated in [17] has recently been analysed numeri-

cally [18]. Both methods seem to be in good agreement.

3.2. Modelling with weak anchoring

The case of small inclusions with no visible hyper-

bolic defects needs to be treated in the approximation

of weak anchoring energy. The global uniform director

orientation is locally perturbed. Solution (2) cannot be

used in this case because a finite surface anchoring

energy around the inclusion must be taken into

account. The associated expression denoted WA can

Figure 2. Isolated inclusion with (z1)-disclination and its
associated hyperbolic defect with (21)-disclination. The
inclusion is centred at the origin of the coordinate system
(x, y). The parameter l is the distance between its surface
and the hyperbolic defect. Tangents along the solid lines
depict schematically the c-director field which exhibits a
radial anchoring at the inclusion interface.
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only be approximated by a simple form given in [19]:

WA&{
W

2

ð
S

dS N cð Þ2

where N~(cos a, sin a) is the normal to the phase

separation surface S, tilted from the x-axis by an

angle a.
When the surface S is cylindrical with radius a, the

surface energy WA (per unit length in the z-direction)

can be expressed as:

WA&{
Wa

2

ð2p
0

da cos2 W{að Þjr~a: ð3Þ

The coefficient W corresponds to the surface anchor-

ing energy (per unit surface of inclusion) when the

minimum for the energy WA is reached: i.e. the

c-director parallel to the surface normal (W~a). Thus

Wa in equation (3) corresponds to the anchoring energy

of the inclusion per unit length in the direction normal

to the layers. As W is a material constant for a given

compound, the anchoring energy Wa is directly

controlled by the inclusion radius a.

Equations (1) and (3) lead to the condition of a finite

torque at the cylindrical inclusion surface S:

a
LW
Lr

����
r~a

z
Wa

2B1
sin 2 W{að Þ

����
r~a

~0 ð4Þ

with the solution W satisfying the equilibrium equation

DW~0 in two dimensions. We do not know the ana-

lytical solution of W for the problem with finite values

of the parameter Wa/B1. For this reason, in this part we

first try to find an approximate solution for very small

values of this factor. For this purpose, we use a

modification of the method determining the director

structure around a colloid particle in a nematic liquid

crystal; see for example [20, 21], the numerical analysis

of the similar problem is in [22]. For small values of

Wa/B1 we assume that deviations of director c from its

uniform orientation are small, i.e. |W|%1. Then

equation (4) can be rewritten as

a
LW
Lr

����
r~a

~
Wa

2B1
sin 2a: ð5Þ

The solution of the equilibrium equation DW~0,

rewritten in polar coordinates (r, a) as

1

r

L
Lr

r
LW
Lr

� �
z

1

r2

L2W

La2
~0

and satisfying (5) is then in the form:

W~{
Wa

4B1

a

r

� �2

sin 2a ð6Þ

decreasing far away from the inclusion as Wy(a/r)2.

Thus solution (6) describes the director distribution for

very small inclusions. Moreover, the condition |W|%1

for all roa induces Wa/B1%4 in (6). Note that solution

(6) is equivalent to the function

W~2a{ arctan
r sin a

r cos a{d
{ arctan

r sin a

r cos azd
ð7Þ

for d~a Wa=4B1ð Þ
1
2%a. The solution (7) is composed of

two (z1)-disclinations at the inclusion centre and

two (21)-disclinations at positions x~¡d, respec-

tively. When d%a these four disclinations are virtual,

situated at the centre of the inclusion and represent a

quadrupole.

3.3. Modelling with strong anchoring

When an inclusion grows, its radius approaches a

critical value associated with the hyperbolic defect

appearance. This case has also to be treated for finite

values of parameter Wa/B1. However, there is no

available analytical solution which can describe this

case. We know two limiting solutions both composed of

four (¡1)-disclinations. Solution (7) corresponds to

weak anchoring when virtual disclinations are grouped

near the inclusion centre. The other solution (2) with

fixed anchoring also satisfies the condition (4) for

infinite anchoring energy (Wa)p‘ when the condition

(4) leads to sin 2(W2a)|r~a~0.

Solution (2) has a dipolar character [17] because a

(21)-disclination is outside an inclusion and the other

three disclinations make an effective (z1)-disclination

representing the inclusion. Also large inclusions having

hyperbolic defects outside form a dipole. Thus we

suppose that the dipolar character of the solution will

dominate for inclusions exhibiting radii close to the

critical. So instead of expressions (2) or (7) we propose

a simple but approximate solution to describe the

director orientation near such an inclusion:

W~a{ arctan
r=að Þ sin a

r=að Þ cos a{C
: ð8Þ

Again we use the parameter C~(azl)/a introduced in

§ 3.1. The function (8) fulfils the equilibrium equation

DW~0 and includes only the (z1)-disclination situated

at the inclusion centre and representing the inclusion

and the (21)-disclination located close to the inclusion

surface. It also includes a uniform c-director distribu-

tion at long distance. However function (8) does not

take into account the equilibrium between the torques

on the inclusion surface (5), and so can be used only for

estimating the distance between inclusion and hyper-

bolic defect, or parameter C, which can be deter-

mined by the following procedure. First, by inserting

722 P. Cluzeau et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
4
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



equation (8) into (3) we obtain for Co1:

WA~{ p Wað Þ 1{
1

2C2

� �
: ð9Þ

The interaction between the inclusion of topological

charge (z1) and its hyperbolic defect of topological

charge (21) (figure 2) can be expressed by the elastic

energy of interaction WD along the z-axis:

WD&p B1 ln
C2

R=að Þ2
ð10Þ

where parameter R is the characteristic size of the film

along smectic layers. The energy WD is similar to that

used for a nematic liquid crystal [14, 15, 17]. Thus the

total energy WDA of a defect–inclusion pair becomes:

WDA&WDzWA&{ Wapð Þ 1{
1

2C2

� �

zp B1 ln
C2

R=að Þ2
: ð11Þ

Then the minimization of (11) with respect to C leads

to the dependence for the proximity coefficient:

C&
Wa

2B1

� �1
2

: ð12Þ

As already mentioned, the inclusion radius a is again

the only factor controlling the position of the hyper-

bolic defect, W and B1 being material constants. This

point has already been noted in 3D nematic systems

[2, 20, 21]. The proximity coefficient C given by

equation (12) increases with increasing anchoring

energy Wa. However, from § 3.1 that deals with fixed

(infinite) anchoring it is clear that for high values of Wa

there exists an upper limit value, C&
ffiffiffi
2

p
, corresponding

to the rigid anchoring situation. The associated

anchoring energy can be estimated: (Wa)max~4B1.

The value (Wa)max is the limiting value in our approxi-

mation: for all Waw(Wa)max we define C&
ffiffiffi
2

p
. On

reaching the value (Wa)max the approximate solution

(8) should be changed for the solution (2) obtained for

fixed boundary conditions (infinite Wa).

Equation (12) can be helpful in interpreting the

experimental behaviour of small inclusions which tend

to coalesce [11]. In effect, given C<1 for small

inclusions (corresponding to a hyperbolic defect at

the inclusion boundary), we can deduce from (12) a

critical radius: ac<2B1/W. This radius ac discriminates

two different regimes:

(i) For afac the anchoring energy Wa is such that

no disclination is outside the inclusion. In that

case, coalescence is effectively preferred.

(ii) By contrast, for awac, the hyperbolic defect,

(21)-disclination, is outside the inclusion (1f

Cv2). The situation when the anchoring energy

Wa is able to keep the hyperbolic defect outside

the inclusion can be called the regime of strong

anchoring energy.

Considering the experimental critical radius after

[11], ac<3 mm, an approximate estimation of the

anchoring energy W can be calculated. The usual

value for the elastic constant being B1<10211 N, the

estimated anchoring energy is of the order of W<
661026 J m22. When the inclusion radius is greater

than the critical radius ac, a hyperbolic defect outside

the inclusion prevents the inclusion coalescence and

then enables the chaining process, as will be discussed

in the next section.

4. Interaction between two inclusions

Let us now consider the case of an interaction

between two inclusions from having the same radius

and whose hyperbolic defects are at the same distance

(azl) from their respective inclusions (figure 3). This

corresponds to the case of large inclusions with Cw1.

The elastic dipole is defined as the vector relating the

inclusion centre to its hyperbolic defect. It is always

parallel to the c-director field at long distance. In [11] it

was reported that hyperbolic defects are systematically

located on the same side of the inclusions with respect

to the uniform c-director orientation. This dipole

configuration can be understood considering the non-

invariance of the smectic C structure with respect to the

cp2c change. This has also been mentioned by Pettey

et al. [17]. On the other hand, the dipoles are not

necessarily parallel to the lines connecting every

inclusion centre called the A-axis. They actually make

an angle w with this axis (figure 3).

Using the same approach as that used in the previous

section, the interaction between inclusion–defect pairs

can be expressed as the interaction between (¡1)-wedge

disclination lines. The corresponding free energy now

involves four topological charges instead of the two

considered in (8):

e r, qð Þ~

p B1 ln
r2z azlð Þ2

{2r azlð Þ cosw
h i

r2z azlð Þ2
z2r azlð Þ cos w

h i
r4

:ð13Þ

Expression (13) describes the interactions induced by

the spatial c-director gradient. This interaction

energy e(r, w) is of dipolar type at long range

(azl)%r. Indeed it can be easily verified that its

expansion versus (azl)/r leads to an 1/r2 dependence:

e(r, w)<2pB1(122 cos2 w)[(azl)/r]2.

(13)
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4.1. Dipolar angle condition for inclusion chaining

The radial force (per unit length in the z-direction)

acting on the inclusions can be derived from expression

(13):

Fr~{
Le r, wð Þ

Lr

~4pB1

azlð Þ2
azlð Þ2

zr2 1{2 cos2 w
� �h i

r2z azlð Þ2
h i2

{4r2 azlð Þ2cos2 w

	 
 : ð14Þ

The radial force (14) is attractive when angle w satisfies

the condition (15):

1

2

azlð Þ2

r2
z1

" #
v cos2 w: ð15Þ

Strictly the A-axis (figure 3) has a meaning only when

two inclusions are present in the film, since its purpose

is to relate their centres. When that condition is

fulfilled, the angle w determines the position of the

associated inclusion dipoles with respect to the A-axis.

Let us take a fixed inclusion at position r~0 as

reference and then consider another inclusion which is

nucleated or positioned far from the reference one, i.e.

with (azl)%r. According to equation (15), both inclu-

sions tend to attract one another for any angle w within

the intervals w[ {p=4, p=4ð Þ or=and w[ 3p=4, 5p=4ð Þ.
Then a chain can possibly be formed. For angles

outside these intervals, force (14) becomes repulsive. So,

starting from a random location of the inclusion at the

time of nucleation, the angular dependence of the radial

force allows us to explain the final distribution of the

inclusions into an array of parallel chains.

Considering now the interaction between two already

formed chains that are parallel and not too far from

each other, we deduce from equation (14) that they tend

to repel one another when the angle w has values near

p/2. Such behaviour is fully confirmed by the experi-

mental observations (see figure 4). Figure 4 shows that

the self-organization of inclusions in a film exhibiting

a long-range uniform c-director field, leads to a

quasi-regular array of parallel chains of inclusions.

The inclusions from neighbouring parallel chains repel

each other at short distances when w is close to p/2,

stabilizing the chain at an equilibrium distance.

4.2. Rotation of the elastic dipoles

During the final part of the chaining process, experi-

mental observations (see figure 5) have shown a rotation

Figure 4. Microscope image of an array of nearly parallel
chains of droplets (associated hyperbolic defects are not
visible because there are no polarizers). No lateral
chaining is observed.

Figure 3. Two identical inclusions with distance r between their centres and their accompanying hyperbolic defects. The A-axis
connects the inclusion centres. Dipole axes lie along the x-axis, making an angle w with the A-axis. The solid lines visualize the
c-director field.
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of the A-axis along the dipoles direction (i.e. w tending

to zero). This behaviour can be understood by investi-

gating the angular force behaviour, associated with the

interaction energy (13):

Fw~{
Le r, wð Þ

rLw

~{4pB1
r azlð Þ2sin 2w

r2z azlð Þ2
h i2

{4r2 azlð Þ2cos2 w

	 
 : ð16Þ

Equilibrium positions resulting from Fw~0 give the

angle values w~0 and w~p/2. The stable angle orien-

tation is given by a chain parallel to the c-director

(w~0), whereas a chain perpendicular to it is unstable

(w~p/2).
Figure 5 illustrates well the different steps followed

during the inclusions chaining: (i) elastic dipoles of both

inclusions remain along the average c-director field at

long distance during the chaining process; (ii) the A-

axis (dashed line relating the inclusion centres) slowly

rotates until becoming parallel to the c-director field

when the inclusions reach their equilibrium distance.

The angular dependence of the radial and angular

interaction forces can fully explain the experimental

behaviour of inclusions illustrated by figures 4 and 5.

Thus, in most cases the final distribution of the inclu-

sions leads to the formation of a nearly periodic system

exhibiting parallel chains lying along the c-director.

4.3. Proximity coefficient for the ‘two-inclusions’ chain

In order to estimate the proximity coefficient C~

(azl)/a associated with a chain built with two inclu-

sions, we need to add a term expressing the repulsion

between the topological charges of both inclusions and

their associated defects. Then expression (11) for energy

with finite anchoring becomes:

W int
DA&2p B1 ln

C2

R=að Þ2
{p B1 ln

4C2

R=að Þ2

{2 Wapð Þ 1{
1

2C2

� �
: ð17Þ

The minimization of (17) gives:

Cint&
Wa

B1

� �1
2

: ð18Þ

The resulting proximity coefficient (18) is similar to that

obtained for an isolated inclusion except it is
ffiffiffi
2

p

greater. The exact analysis of this problem should be

performed numerically, as was demonstrated in the

case of two inclusions for fixed anchoring conditions

in [18].

We note that experimental studies [11] have clearly

shown that the proximity coefficient depends also on

the film thickness. The modelling of the effect of

thickness is currently under study.

5. Contributions of chirality

In previous experimental investigations we found

that in SmC* films, the c-director anchoring is radial

whereas it is tangential in non-chiral SmC films [11, 12].

Thus, the chirality seems to influence the type of

director anchoring at the inclusion boundaries.

In the chiral smectic structure, the spontaneous

polarization is parallel to the smectic layers and per-

pendicular to the c-director [15]. The charge associated

with the polarization divergence around the inclusions

can increase their interaction energy. Thus, we can

reasonably suppose that the c-director adopts a radial

Figure 5. Attraction of two inclusions. The three photomicrographs give the evolution of the angle w during chaining process: (a)
w1~45‡, w2~27‡; (b) w1~35‡, w2~22‡; (c) w1~w2~0. The A-axis (dashed line relating the inclusion centres) slowly rotates
until it becomes parallel to c. The elastic dipoles of both inclusions (represented by arrows) remain along the average
c-director field at long distance during the chaining process.
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configuration around the inclusions in order to

minimize the polarization charge effect. The sponta-

neous polarization is thus tangential to the inclusion

surface, leading to a global zero electrical charge

around the inclusion. We can also expect that the
anchoring energy will be high for materials with high

values of spontaneous polarization.

As for the hyperbolic defect, it can also carry a non-

zero charge in chiral-smectic films. Such influences,

linked to spontaneous polarization, must be taken into

account for a more detailed study of inclusion chaining.

6. Conclusions
We have proposed a simplified model describing

the interactions between an isolated inclusion with its

hyperbolic defect as well as the interactions between

two inclusions during their chaining. The model enables

us to explain the main types of behaviour reported in

our previous experimental studies of SmC* chiral films

at the SmC*–N* transition [9, 11].

Each inclusion and its associated hyperbolic defect
are modelled as a pair of (¡1)-wedge disclination lines.

It is then possible to relate the distance between the

inclusion and its hyperbolic defect to its radius, thanks

to the introduction of a finite anchoring energy in the

interaction energy of the system. A critical radius can

also be deduced below which the topological hyperbolic

defect becomes virtual. Such characteristics shine some

light on the coalescence process observed experimen-
tally for the smallest inclusions.

As for the interaction involving two inclusion–defect

pairs, the attractive or repulsive nature of the interac-

tion forces is directly dependent on the angle of the

elastic dipole axis with respect to that connecting the

inclusion centres. The equilibrium state is reached when

this angle is zero, which corresponds effectively to the

formation of a chain parallel to the c-director. Our
model also explains why the inclusions organize

themselves in parallel chains. The separation of two

adjacent inclusions in a chain is shown to be greater

than twice the distance between inclusion and defect in

the isolated situation.

Further investigations will be made to evaluate the

influence of chirality on the inclusion elastic interaction

energy. The first parameter to be taken into account
will be the spontaneous polarization in the smectic

chiral film. The second parameter will be the helical

pitch, which cannot always be neglected for the thickest

smectic chiral films. Another interesting aspect to study

will concern the dependence of the inclusion–inclusion

separation as a function of film thickness.
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[ 14 ] KLÉMAN, M., 1983, Points, Lines, and Walls in Liquid
Crystals, Magnetic Systems and Various Ordered Media
(New York: Wiley).

[ 15 ] DE GENNES, P. G., and PROST, J., 1993, The Physics of
Liquid Crystals, 2nd Edn (Oxford: Oxford University
Press).
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